
ESc 101: Fundamentals of Computing

Lecture 19

Feb 15, 2010

Lecture 19 () ESc 101 Feb 15, 2010 1 / 14

Outline

1 Printf and Scanf

2 Pointers

Lecture 19 () ESc 101 Feb 15, 2010 2 / 14

scanf

scanf is a function that reads values from keyboard.

The number and type of values to be read is specified by the first
argument of scanf which is a constant string like in printf.

Since parameters are passed in C by value, how are the values read
and stored in parameter variables by scanf?

For this, we need to understand pointers.

Lecture 19 () ESc 101 Feb 15, 2010 3 / 14

scanf

scanf is a function that reads values from keyboard.

The number and type of values to be read is specified by the first
argument of scanf which is a constant string like in printf.

Since parameters are passed in C by value, how are the values read
and stored in parameter variables by scanf?

For this, we need to understand pointers.

Lecture 19 () ESc 101 Feb 15, 2010 3 / 14

scanf

scanf is a function that reads values from keyboard.

The number and type of values to be read is specified by the first
argument of scanf which is a constant string like in printf.

Since parameters are passed in C by value, how are the values read
and stored in parameter variables by scanf?

For this, we need to understand pointers.

Lecture 19 () ESc 101 Feb 15, 2010 3 / 14

scanf

scanf is a function that reads values from keyboard.

The number and type of values to be read is specified by the first
argument of scanf which is a constant string like in printf.

Since parameters are passed in C by value, how are the values read
and stored in parameter variables by scanf?

For this, we need to understand pointers.

Lecture 19 () ESc 101 Feb 15, 2010 3 / 14

Outline

1 Printf and Scanf

2 Pointers

Lecture 19 () ESc 101 Feb 15, 2010 4 / 14

Memory Address

A variable is a name for a memory location.

Recall that this is done for ease of use, as representing a memory
location by its address is tricky.

However, every memory location does have an address:
I It is a number uniquely identifying the memory location.

Lecture 19 () ESc 101 Feb 15, 2010 5 / 14

Memory Address

A variable is a name for a memory location.

Recall that this is done for ease of use, as representing a memory
location by its address is tricky.

However, every memory location does have an address:
I It is a number uniquely identifying the memory location.

Lecture 19 () ESc 101 Feb 15, 2010 5 / 14

Recall: Call-by-Value

In a function call, only the value stored in an argument is passed to the
corresponding parameter of the function. Example:

void foo(int y)

{

y = 20; /* function sets y to 20 */

}

main()

{

int x;

x = 10; /* x = 10 here */

foo(x);

printf("%d", x); /* x = 10 here too */

}

Lecture 19 () ESc 101 Feb 15, 2010 6 / 14

Recall: Call-by-Value

102345820
102345819

102658807
102658808

MEMORY

void foo(int y)

{
y = 20;

}
main()main()

{
int x;

x = 10;

foo(x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 7 / 14

Recall: Call-by-Value

102345820
102345819

102658807
102658808

x

MEMORY

void foo(int y)

{
y = 20;

}
main()

{
int x;int x;

x = 10;

foo(x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 7 / 14

Recall: Call-by-Value

102345820
102345819

102658807
102658808

10 x

MEMORY

void foo(int y)

{
y = 20;

}
main()

{
int x;

x = 10;x = 10;

foo(x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 7 / 14

Recall: Call-by-Value

102345820
102345819

102658807
102658808

10 x

10 y

MEMORY

void foo(int y)void foo(int y)

{
y = 20;

}
main()

{
int x;

x = 10;

foo(x);foo(x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 7 / 14

Recall: Call-by-Value

102345820
102345819

102658807
102658808

10 x

20 y

MEMORY

void foo(int y)

{
y = 20;y = 20;

}
main()

{
int x;

x = 10;

foo(x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 7 / 14

Recall: Call-by-Value

102345820
102345819

102658807
102658808

10 x

20

MEMORY

void foo(int y)

{
y = 20;

}
main()

{
int x;

x = 10;

foo(x);

printf("%d", x);printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 7 / 14

Getting Around Call-by-Value

Suppose that instead of value of x, we pass the address of x to the
function foo.

Then the address of variable x of main will be available inside foo –
as the value of variable y.

Suppose also that we can say the following inside foo:
I store 20 in the memory location whose address is stored in variable y

Then the value of x will change!

Lecture 19 () ESc 101 Feb 15, 2010 8 / 14

Getting Around Call-by-Value

Suppose that instead of value of x, we pass the address of x to the
function foo.

Then the address of variable x of main will be available inside foo –
as the value of variable y.

Suppose also that we can say the following inside foo:
I store 20 in the memory location whose address is stored in variable y

Then the value of x will change!

Lecture 19 () ESc 101 Feb 15, 2010 8 / 14

Getting Around Call-by-Value

Suppose that instead of value of x, we pass the address of x to the
function foo.

Then the address of variable x of main will be available inside foo –
as the value of variable y.

Suppose also that we can say the following inside foo:
I store 20 in the memory location whose address is stored in variable y

Then the value of x will change!

Lecture 19 () ESc 101 Feb 15, 2010 8 / 14

Getting Around Call-by-Value

Suppose that instead of value of x, we pass the address of x to the
function foo.

Then the address of variable x of main will be available inside foo –
as the value of variable y.

Suppose also that we can say the following inside foo:
I store 20 in the memory location whose address is stored in variable y

Then the value of x will change!

Lecture 19 () ESc 101 Feb 15, 2010 8 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

MEMORY

void foo(<address> y)

{
<address in y> = 20;

}
main()main()

{
int x;

x = 10;

foo(<address of x>);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 9 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

x

MEMORY

void foo(<address> y)

{
<address in y> = 20;

}
main()

{
int x;int x;

x = 10;

foo(<address of x>);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 9 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

10 x

MEMORY

void foo(<address> y)

{
<address in y> = 20;

}
main()

{
int x;

x = 10;x = 10;

foo(<address of x>);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 9 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

10 x

102345820 y

MEMORY

void foo(<address> y)void foo(<address> y)

{
<address in y> = 20;

}
main()

{
int x;

x = 10;

foo(<address of x>);foo(<address of x>);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 9 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

20 x

102345820 y

MEMORY

void foo(<address> y)

{
<address in y> = 20;<address in y> = 20;

}
main()

{
int x;

x = 10;

foo(<address of x>);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 9 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

20 x

102345820

MEMORY

void foo(<address> y)

{
<address in y> = 20;

}
main()

{
int x;

x = 10;

foo(<address of x>);

printf("%d", x);printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 9 / 14

Getting Around Call-by-Value

C allows this!

<address of x>: &x

<address in y>: *y

Type <address>: Simply the type of *y!

Lecture 19 () ESc 101 Feb 15, 2010 10 / 14

Getting Around Call-by-Value

C allows this!

<address of x>: &x

<address in y>: *y

Type <address>: Simply the type of *y!

Lecture 19 () ESc 101 Feb 15, 2010 10 / 14

Getting Around Call-by-Value

C allows this!

<address of x>: &x

<address in y>: *y

Type <address>: Simply the type of *y!

Lecture 19 () ESc 101 Feb 15, 2010 10 / 14

Getting Around Call-by-Value

C allows this!

<address of x>: &x

<address in y>: *y

Type <address>: Simply the type of *y!

Lecture 19 () ESc 101 Feb 15, 2010 10 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

MEMORY

void foo(int *y)

{
*y = 20;

}
main()main()

{
int x;

x = 10;

foo(&x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 11 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

x

MEMORY

void foo(int *y)

{
*y = 20;

}
main()

{
int x;int x;

x = 10;

foo(&x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 11 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

10 x

MEMORY

void foo(int *y)

{
*y = 20;

}
main()

{
int x;

x = 10;x = 10;

foo(&x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 11 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

10 x

102345820 y

MEMORY

void foo(int *y)void foo(int *y)

{
*y = 20;

}
main()

{
int x;

x = 10;

foo(&x);foo(&x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 11 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

20 x

102345820 y

MEMORY

void foo(int *y)

{
*y = 20;*y = 20;

}
main()

{
int x;

x = 10;

foo(&x);

printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 11 / 14

Getting Around Call-by-Value

102345820
102345819

102658807
102658808

20 x

102345820

MEMORY

void foo(int *y)

{
*y = 20;

}
main()

{
int x;

x = 10;

foo(&x);

printf("%d", x);printf("%d", x);

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 11 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Pointers

Variable y stores a number.

However, a special meaning is attached to this number: this number
is the address of a memory location that stores an int.

The type of y is denoted by (int *).

Variable y is also called a pointer:
I It points to the location of variable x of main.
I *y represents the variable x of main!

&x is also a pointer to x and equals y.

Lecture 19 () ESc 101 Feb 15, 2010 12 / 14

Resolving the Anomaly for Arrays

Declaration
int z[3]

reserves 3 memory locations (each of 4 bytes).

These are named z[0] to z[2].

In addition to this, another memory location is reserved!

The name of this location is z.

It stores the pointer to z[0].

This is why passing name of array as parameter allows us to change
its content inside a function.

Lecture 19 () ESc 101 Feb 15, 2010 13 / 14

Resolving the Anomaly for Arrays

Declaration
int z[3]

reserves 3 memory locations (each of 4 bytes).

These are named z[0] to z[2].

In addition to this, another memory location is reserved!

The name of this location is z.

It stores the pointer to z[0].

This is why passing name of array as parameter allows us to change
its content inside a function.

Lecture 19 () ESc 101 Feb 15, 2010 13 / 14

Resolving the Anomaly for Arrays

Declaration
int z[3]

reserves 3 memory locations (each of 4 bytes).

These are named z[0] to z[2].

In addition to this, another memory location is reserved!

The name of this location is z.

It stores the pointer to z[0].

This is why passing name of array as parameter allows us to change
its content inside a function.

Lecture 19 () ESc 101 Feb 15, 2010 13 / 14

Resolving the Anomaly for Arrays

Declaration
int z[3]

reserves 3 memory locations (each of 4 bytes).

These are named z[0] to z[2].

In addition to this, another memory location is reserved!

The name of this location is z.

It stores the pointer to z[0].

This is why passing name of array as parameter allows us to change
its content inside a function.

Lecture 19 () ESc 101 Feb 15, 2010 13 / 14

Resolving the Anomaly for Arrays

Declaration
int z[3]

reserves 3 memory locations (each of 4 bytes).

These are named z[0] to z[2].

In addition to this, another memory location is reserved!

The name of this location is z.

It stores the pointer to z[0].

This is why passing name of array as parameter allows us to change
its content inside a function.

Lecture 19 () ESc 101 Feb 15, 2010 13 / 14

Resolving the Anomaly for Arrays

Declaration
int z[3]

reserves 3 memory locations (each of 4 bytes).

These are named z[0] to z[2].

In addition to this, another memory location is reserved!

The name of this location is z.

It stores the pointer to z[0].

This is why passing name of array as parameter allows us to change
its content inside a function.

Lecture 19 () ESc 101 Feb 15, 2010 13 / 14

Example

246231519
246231520
246231521

246231545

246234411

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0 z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0 z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0

z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0

z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0
0

z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0
0

z[0]
z[1]
z[2]

246231519 z

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0
0

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0
0

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0
0

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
0
0

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
1
0

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
1
0

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
1
2

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
1
2

z[0]
z[1]
z[2]

246231519 z

246231519 y

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

Example

246231519
246231520
246231521

246231545

246234411

0
1
2

z[0]
z[1]
z[2]

246231519 z

246231519

MEMORY

void foo(int y[]) {void foo(int y[]) {
for (int i=0;i<3;i++)

y[i] = y[i] + i;

}
main() {

int z[3];

for (int i=0;i<3;i++)

z[i] = 0;

foo(z);

/* do something *//* do something */

}

PROGRAM

Lecture 19 () ESc 101 Feb 15, 2010 14 / 14

	Printf and Scanf
	Pointers

